[转]一份完整的阿里云 Redis 开发规范
1-1. 一、键值设计
1-1-1. 1. key名设计
- (1)【建议】: 可读性和可管理性
以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id
1 |
ugc:video:1 |
- (2)【建议】:简洁性
保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:
1 |
user:{uid}:friends:messages:{mid}简化为u:{uid}:fr:m:{mid} |
- (3)【强制】:不要包含特殊字符
反例:包含空格、换行、单双引号以及其他转义字符
详细解析
1-1-2. 2. value设计
- (1)【强制】:拒绝bigkey(防止网卡流量、慢查询)
string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
反例:一个包含200万个元素的list。
非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查)),查找方法和删除方法
详细解析
- (2)【推荐】:选择适合的数据类型。
例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如ziplist,但也要注意节省内存和性能之间的平衡)
反例:
1 2 3 |
set user:1:name tom set user:1:age 19 set user:1:favor football |
正例:
1 |
hmset user:1 name tom age 19 favor football |
1-1-3. 3.【推荐】:控制key的生命周期,redis不是垃圾桶。
建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime。
1-2. 二、命令使用
1-2-1. 1.【推荐】 O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。
1-2-2. 2.【推荐】:禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。
1-2-3. 3.【推荐】合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。
1-2-4. 4.【推荐】使用批量操作提高效率
1 |
原生命令:例如mget、mset。 非原生命令:可以使用pipeline提高效率。 |
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。
注意两者不同:
1 2 3 |
1. 原生是原子操作,pipeline是非原子操作。 2. pipeline可以打包不同的命令,原生做不到 3. pipeline需要客户端和服务端同时支持。 |
1-2-5. 5.【建议】Redis事务功能较弱,不建议过多使用
Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上(可以使用hashtag功能解决)
1-2-6. 6.【建议】Redis集群版本在使用Lua上有特殊要求:
- 1.所有key都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的redis命令,key的位置,必须是KEYS array, 否则直接返回error,”-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS array”
- 2.所有key,必须在1个slot上,否则直接返回error, “-ERR eval/evalsha command keys must in same slot”
1-2-7. 7.【建议】必要情况下使用monitor命令时,要注意不要长时间使用。
1-3. 三、客户端使用
1-3-1. 1.【推荐】
避免多个应用使用一个Redis实例
正例:不相干的业务拆分,公共数据做服务化。
1-3-2. 2.【推荐】
使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
执行命令如下: Jedis jedis = null; try { jedis = jedisPool.getResource(); //具体的命令 jedis.executeCommand() } catch (Exception e) { logger.error("op key {} error: " + e.getMessage(), key, e); } finally { //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。 if (jedis != null) jedis.close(); } |
下面是JedisPool优化方法的文章:
1-3-3. 3.【建议】
高并发下建议客户端添加熔断功能(例如netflix hystrix)
1-3-4. 4.【推荐】
设置合理的密码,如有必要可以使用SSL加密访问(阿里云Redis支持)
1-3-5. 5.【建议】
根据自身业务类型,选好maxmemory-policy(最大内存淘汰策略),设置好过期时间。
默认策略是volatile-lru,即超过最大内存后,在过期键中使用lru算法进行key的剔除,保证不过期数据不被删除,但是可能会出现OOM问题。
1-3-5-1. 其他策略如下:
- allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。
- allkeys-random:随机删除所有键,直到腾出足够空间为止。
- volatile-random:随机删除过期键,直到腾出足够空间为止。
- volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。
- noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息”(error) OOM command not allowed when used memory”,此时Redis只响应读操作。
1-4. 四、相关工具
1-4-1. 1.【推荐】:数据同步
redis间数据同步可以使用:redis-port
1-4-2. 2.【推荐】:big key搜索
1-4-3. 3.【推荐】:热点key寻找(内部实现使用monitor,所以建议短时间使用)
1 |
阿里云Redis已经在内核层面解决热点key问题,欢迎使用。 |
1. 五 附录:删除bigkey
1 2 |
1. 下面操作可以使用pipeline加速。 2. redis 4.0已经支持key的异步删除,欢迎使用。 |
1-1-1-1. 1. Hash删除: hscan + hdel
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
public void delBigHash(String host, int port, String password, String bigHashKey) { Jedis jedis = new Jedis(host, port); if (password != null && !"".equals(password)) { jedis.auth(password); } ScanParams scanParams = new ScanParams().count(100); String cursor = "0"; do { ScanResult<Entry<String, String>> scanResult = jedis.hscan(bigHashKey, cursor, scanParams); List<Entry<String, String>> entryList = scanResult.getResult(); if (entryList != null && !entryList.isEmpty()) { for (Entry<String, String> entry : entryList) { jedis.hdel(bigHashKey, entry.getKey()); } } cursor = scanResult.getStringCursor(); } while (!"0".equals(cursor)); //删除bigkey jedis.del(bigHashKey); } |
1-1-1-2. 2. List删除: ltrim
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
public void delBigList(String host, int port, String password, String bigListKey) { Jedis jedis = new Jedis(host, port); if (password != null && !"".equals(password)) { jedis.auth(password); } long llen = jedis.llen(bigListKey); int counter = 0; int left = 100; while (counter < llen) { //每次从左侧截掉100个 jedis.ltrim(bigListKey, left, llen); counter += left; } //最终删除key jedis.del(bigListKey); } |
1-1-1-3. 3. Set删除: sscan + srem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
public void delBigSet(String host, int port, String password, String bigSetKey) { Jedis jedis = new Jedis(host, port); if (password != null && !"".equals(password)) { jedis.auth(password); } ScanParams scanParams = new ScanParams().count(100); String cursor = "0"; do { ScanResult<String> scanResult = jedis.sscan(bigSetKey, cursor, scanParams); List<String> memberList = scanResult.getResult(); if (memberList != null && !memberList.isEmpty()) { for (String member : memberList) { jedis.srem(bigSetKey, member); } } cursor = scanResult.getStringCursor(); } while (!"0".equals(cursor)); //删除bigkey jedis.del(bigSetKey); } |
1-1-1-4. 4. SortedSet删除: zscan + zrem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
public void delBigZset(String host, int port, String password, String bigZsetKey) { Jedis jedis = new Jedis(host, port); if (password != null && !"".equals(password)) { jedis.auth(password); } ScanParams scanParams = new ScanParams().count(100); String cursor = "0"; do { ScanResult<Tuple> scanResult = jedis.zscan(bigZsetKey, cursor, scanParams); List<Tuple> tupleList = scanResult.getResult(); if (tupleList != null && !tupleList.isEmpty()) { for (Tuple tuple : tupleList) { jedis.zrem(bigZsetKey, tuple.getElement()); } } cursor = scanResult.getStringCursor(); } while (!"0".equals(cursor)); //删除bigkey jedis.del(bigZsetKey); } |
[source]