[转]分布式系统的唯一id生成算法
如何实现全局唯一id呢?有以下几种方案。
1. (1-a)方案一:独立数据库自增id
这个方案就是说你的系统每次要生成一个id,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id。拿到这个id之后再往对应的分库分表里去写入。
比如说你有一个auto_id库,里面就一个表,叫做auto_id表,有一个id是自增长的。
那么你每次要获取一个全局唯一id,直接往这个表里插入一条记录,获取一个全局唯一id即可,然后这个全局唯一id就可以插入订单的分库分表中。
这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增id,要是高并发的话,就会有瓶颈的,因为auto_id库要是承载个每秒几万并发,肯定是不现实的了。
2. (1-b)基于数据库集群模式
起始值
和自增步长
1 2 |
set @@auto_increment_offset = 1; -- 起始值 set @@auto_increment_increment = 2; -- 步长 |
1 2 |
set @@auto_increment_offset = 2; -- 起始值 set @@auto_increment_increment = 2; -- 步长 |
12 1、3、5、7、92、4、6、8、10
MySQL
实例需要人工修改一、二两台MySQL实例
的起始值和步长,把第三台机器的ID
起始生成位置设定在比现有最大自增ID
的位置远一些,但必须在一、二两台MySQL实例
ID还没有增长到第三台MySQL实例
的起始ID
值的时候,否则自增ID
就要出现重复了,必要时可能还需要停机修改。-
解决DB单点问题
-
不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。
3. (1-c)基于数据库的号段模式
1 2 3 4 5 6 7 8 |
CREATE TABLE id_generator ( id int(10) NOT NULL, max_id bigint(20) NOT NULL COMMENT '当前最大id', step int(20) NOT NULL COMMENT '号段的布长', biz_type int(20) NOT NULL COMMENT '业务类型', version int(20) NOT NULL COMMENT '版本号', PRIMARY KEY (`id`) ) |
|
|
|
|
|
max_id
字段做一次update
操作,update max_id= max_id + step
,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]
。version
乐观锁方式更新,这种分布式ID
生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。4. (2)方案二:uuid
这个每个人都应该知道吧,就是用UUID生成一个全局唯一的id。
好处就是每个系统本地生成,不要基于数据库来了
不好之处就是,uuid太长了,作为主键性能太差了,不适合用于主键。
如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。
5. (3)方案三:获取系统当前时间
这个方案的意思就是获取当前时间作为全局唯一的id。
但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。
一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。
你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如说订单编号:时间戳 + 用户id + 业务含义编码。
6. (4)方案四:snowflake算法的思想分析
snowflake算法,是twitter开源的分布式id生成算法。
其核心思想就是:使用一个64 bit的long型的数字作为全局唯一id,这64个bit中,其中1个bit是不用的,然后用其中的41 bit作为毫秒数,用10 bit作为工作机器id,12 bit作为序列号。
给大家举个例子吧,比如下面那个64 bit的long型数字,大家看看
上面第一个部分,是1个bit:0,这个是无意义的
上面第二个部分是41个bit:表示的是时间戳
上面第三个部分是5个bit:表示的是机房id,10001
上面第四个部分是5个bit:表示的是机器id,1 1001
上面第五个部分是12个bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的id的序号,0000 00000000
- 1 bit:是不用的,为啥呢?
因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一都是0
- 41 bit:表示的是时间戳,单位是毫秒。
41 bit可以表示的数字多达2^41 – 1,也就是可以标识2 ^ 41 – 1个毫秒值,换算成年就是表示69年的时间。
- 10 bit:记录工作机器id,代表的是这个服务最多可以部署在2^10台机器上,也就是1024台机器。
但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。
- 12 bit:这个是用来记录同一个毫秒内产生的不同id。
12 bit可以代表的最大正整数是2 ^ 12 – 1 = 4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id
简单来说,你的某个服务假设要生成一个全局唯一id,那么就可以发送一个请求给部署了snowflake算法的系统,由这个snowflake算法系统来生成唯一id。
这个snowflake算法系统首先肯定是知道自己所在的机房和机器的,比如机房id = 17,机器id = 12。
接着snowflake算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个64 bit的long型id,64个bit中的第一个bit是无意义的。
接着41个bit,就可以用当前时间戳(单位到毫秒),然后接着5个bit设置上这个机房id,还有5个bit设置上机器id。
最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成id的请求累加一个序号,作为最后的12个bit。
最终一个64个bit的id就出来了。
这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的id。可能一个毫秒内会生成多个id,但是有最后12个bit的序号来区分开来。
下面我们简单看看这个snowflake算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。
总之就是用一个64bit的数字中各个bit位来设置不同的标志位,区分每一个id。
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。
6-1. snowflake算法的代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
public class IdWorker { private long workerId; // 这个就是代表了机器id private long datacenterId; // 这个就是代表了机房id private long sequence; // 这个就是代表了一毫秒内生成的多个id的最新序号 public IdWorker(long workerId, long datacenterId, long sequence) { // sanity check for workerId // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0 if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException( String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException( String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; this.sequence = sequence; } private long twepoch = 1288834974657L; private long workerIdBits = 5L; private long datacenterIdBits = 5L; // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内 private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内 private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); private long sequenceBits = 12L; private long workerIdShift = sequenceBits; private long datacenterIdShift = sequenceBits + workerIdBits; private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private long sequenceMask = -1L ^ (-1L << sequenceBits); private long lastTimestamp = -1L; public long getWorkerId(){ return workerId; } public long getDatacenterId() { return datacenterId; } public long getTimestamp() { return System.currentTimeMillis(); } // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id public synchronized long nextId() { // 这儿就是获取当前时间戳,单位是毫秒 long timestamp = timeGen(); if (timestamp < lastTimestamp) { System.err.printf( "clock is moving backwards. Rejecting requests until %d.", lastTimestamp); throw new RuntimeException( String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id // 这个时候就得把seqence序号给递增1,最多就是4096 if (lastTimestamp == timestamp) { // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来, //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围 sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0; } // 这儿记录一下最近一次生成id的时间戳,单位是毫秒 lastTimestamp = timestamp; // 这儿就是最核心的二进制位运算操作,生成一个64bit的id // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型 return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; } private long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } private long timeGen(){ return System.currentTimeMillis(); } //---------------测试--------------- public static void main(String[] args) { IdWorker worker = new IdWorker(1,1,1); for (int i = 0; i < 30; i++) { System.out.println(worker.nextId()); } } } |
6-2. snowflake算法一个小小的改进思路
其实在实际的开发中,这个snowflake算法可以做一点点改进。
因为大家可以考虑一下,我们在生成唯一id的时候,一般都需要指定一个表名,比如说订单表的唯一id。
所以上面那64个bit中,代表机房的那5个bit,可以使用业务表名称来替代,比如用00001代表的是订单表。
因为其实很多时候,机房并没有那么多,所以那5个bit用做机房id可能意义不是太大。
这样就可以做到,snowflake算法系统的每一台机器,对一个业务表,在某一毫秒内,可以生成一个唯一的id,一毫秒内生成很多id,用最后12个bit来区分序号对待。
补充:分布式 id 生成器
7. (5)基于Redis模式
Redis
也同样可以实现,原理就是利用redis
的 incr
命令实现ID的原子性自增。1 2 3 4 |
127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1 OK 127.0.0.1:6379> incr seq_id // 增加1,并返回递增后的数值 (integer) 2 |
redis
实现需要注意一点,要考虑到redis持久化的问题。redis
有两种持久化方式RDB
和AOF
-
RDB
会定时打一个快照进行持久化,假如连续自增但redis
没及时持久化,而这会Redis挂掉了,重启Redis后会出现ID重复的情况。 -
AOF
会对每条写命令进行持久化,即使Redis
挂掉了也不会出现ID重复的情况,但由于incr命令的特殊性,会导致Redis
重启恢复的数据时间过长。
8. (6)百度(uid-generator)
uid-generator
是由百度技术部开发,项目GitHub地址 https://github.com/baidu/uid-generatoruid-generator
是基于Snowflake
算法实现的,与原始的snowflake
算法不同在于,uid-generator
支持自定义时间戳
、工作机器ID
和 序列号
等各部分的位数,而且uid-generator
中采用用户自定义workId
的生成策略。uid-generator
需要与数据库配合使用,需要新增一个WORKER_NODE
表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增ID就是该机器的workId
数据由host,port组成。uid-generator
ID组成结构:workId
,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake
不太一样,时间的单位是秒,而不是毫秒,workId
也不一样,而且同一应用每次重启就会消费一个workId
。参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md
9. (7)美团(Leaf)
Leaf
由美团开发,github地址:https://github.com/Meituan-Dianping/LeafLeaf
同时支持号段模式和snowflake
算法模式,可以切换使用。9-1. 号段模式
leaf_alloc
leaf_alloc
;1 2 3 4 5 6 7 8 9 10 |
DROP TABLE IF EXISTS `leaf_alloc`; CREATE TABLE `leaf_alloc` ( `biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key', `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id', `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长', `description` varchar(256) DEFAULT NULL COMMENT '业务key的描述', `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间', PRIMARY KEY (`biz_tag`) ) ENGINE=InnoDB; |
号段模式
,配置对应的数据库信息,并关闭snowflake
模式1 2 3 4 5 6 7 8 9 |
leaf.name=com.sankuai.leaf.opensource.test leaf.segment.enable=true leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8 leaf.jdbc.username=root leaf.jdbc.password=root leaf.snowflake.enable=false #leaf.snowflake.zk.address= #leaf.snowflake.port= |
leaf-server
模块的 LeafServerApplication
项目就跑起来了9-2. snowflake模式
Leaf
的snowflake模式依赖于ZooKeeper
,不同于原始snowflake
算法也主要是在workId
的生成上,Leaf
中workId
是基于ZooKeeper
的顺序Id来生成的,每个应用在使用Leaf-snowflake
时,启动时都会都在Zookeeper
中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId
。1 2 3 |
leaf.snowflake.enable=true leaf.snowflake.zk.address=127.0.0.1 leaf.snowflake.port=2181 |
10. (8)滴滴(Tinyid)
Tinyid
由滴滴开发,Github地址:https://github.com/didi/tinyid。Tinyid
是基于号段模式原理实现的与Leaf
如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]Tinyid
提供http
和tinyid-client
两种方式接入10-1. Http方式接入
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
CREATE TABLE `tiny_id_info` ( `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键', `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一', `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同', `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id', `step` int(11) DEFAULT '0' COMMENT '步长', `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量', `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数', `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间', `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间', `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号', PRIMARY KEY (`id`), UNIQUE KEY `uniq_biz_type` (`biz_type`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表'; CREATE TABLE `tiny_id_token` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id', `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token', `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识', `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注', `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间', `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表'; INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`) VALUES (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1); INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`) VALUES (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3); INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`) VALUES (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48'); INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`) VALUES (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48'); |
1 2 3 4 5 |
datasource.tinyid.names=primary datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8 datasource.tinyid.primary.username=root datasource.tinyid.primary.password=123456 |
tinyid-server
后测试1 2 3 4 5 6 |
获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c' 返回结果: 3 批量获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10' 返回结果: 4,5,6,7,8,9,10,11,12,13 |
10-2. Java客户端方式接入
1 2 3 4 5 |
<dependency> <groupId>com.xiaoju.uemc.tinyid</groupId> <artifactId>tinyid-client</artifactId> <version>${tinyid.version}</version> </dependency> |
1 2 |
tinyid.server =localhost:9999 tinyid.token =0f673adf80504e2eaa552f5d791b644c |
test
、tinyid.token
是在数据库表中预先插入的数据,test
是具体业务类型,tinyid.token
表示可访问的业务类型1 2 3 4 5 |
// 获取单个分布式自增ID Long id = TinyId . nextId( " test " ); // 按需批量分布式自增ID List< Long > ids = TinyId . nextId( " test " , 10 ); |