[转]深入学习Redis(5):集群
1. 2. 前言 在前面的文章中,已经介绍了Redis的几种高可用技术:持久化、主从复制和哨兵,但这些方案仍有不足,其中最主要的问题是存储能力受单机限制,以及无法实现写操作的负载均衡。 Redis集群解决了上述问题,实现了较为完善的高可用方案。本文将详细介绍集群,主要内容包括:集群的作用;集群的搭建方法及设计方案;集群的基本原理;客户端访问集群的方法;以及其他实践中需要的集群知识(集群扩容、故障转移、参数优化等)。
Just One Pure ITer
1. 2. 前言 在前面的文章中,已经介绍了Redis的几种高可用技术:持久化、主从复制和哨兵,但这些方案仍有不足,其中最主要的问题是存储能力受单机限制,以及无法实现写操作的负载均衡。 Redis集群解决了上述问题,实现了较为完善的高可用方案。本文将详细介绍集群,主要内容包括:集群的作用;集群的搭建方法及设计方案;集群的基本原理;客户端访问集群的方法;以及其他实践中需要的集群知识(集群扩容、故障转移、参数优化等)。
1. 2. 前言 在 深入学习Redis(3):主从复制 中曾提到,Redis主从复制的作用有数据热备、负载均衡、故障恢复等;但主从复制存在的一个问题是故障恢复无法自动化。本文将要介绍的哨兵,它基于Redis主从复制,主要作用便是解决主节点故障恢复的自动化问题,进一步提高系统的高可用性。 文章主要内容如下:首先介绍哨兵的作用和架构;然后讲述哨兵系统的部署方法,以及通过客户端访问哨兵系统的方法;然后简要说明哨兵实现的基本原理;最后给出关于哨兵实践的一些建议。文章内容基于Redis 3.0版本。
1. 前言 在前面的两篇文章中,分别介绍了Redis的内存模型和Redis的持久化。 在Redis的持久化中曾提到,Redis高可用的方案包括持久化、主从复制(及读写分离)、哨兵和集群。其中持久化侧重解决的是Redis数据的单机备份问题(从内存到硬盘的备份);而主从复制则侧重解决数据的多机热备。此外,主从复制还可以实现负载均衡和故障恢复。 这篇文章中,将详细介绍Redis主从复制的方方面面,包括:如何使用主从复制、主从复制的原理(重点是全量复制和部分复制、以及心跳机制)、实际应用中需要注意的问题(如数据不一致问题、复制超时问题、复制缓冲区溢出问题)、主从复制相关的配置(重点是repl-timeout、client-output-buffer-limit slave)等。
1. 2. 前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化、复制(及读写分离)、哨兵、以及集群。 本文将先说明上述几种技术分别解决了Redis高可用的什么问题;然后详细介绍Redis的持久化技术,主要是RDB和AOF两种持久化方案;在介绍RDB和AOF方案时,不仅介绍其作用及操作方法,同时介绍持久化实现的一些原理细节及需要注意的问题。最后,介绍在实际使用中,持久化方案的选择,以及经常遇到的问题等。
1. 前言 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分。 我们使用Redis时,会接触Redis的5种对象类型(字符串、哈希、列表、集合、有序集合),丰富的类型是Redis相对于Memcached等的一大优势。在了解Redis的5种对象类型的用法和特点的基础上,进一步了解Redis的内存模型,对Redis的使用有很大帮助,例如: 1、估算Redis内存使用量。目前为止,内存的使用成本仍然相对较高,使用内存不能无所顾忌;根据需求合理的评估Redis的内存使用量,选择合适的机器配置,可以在满足需求的情况下节约成本。 2、优化内存占用。了解Redis内存模型可以选择更合适的数据类型和编码,更好的利用Redis内存。 3、分析解决问题。当Redis出现阻塞、内存占用等问题时,尽快发现导致问题的原因,便于分析解决问题。 这篇文章主要介绍Redis的内存模型(以3.0为例),包括Redis占用内存的情况及如何查询、不同的对象类型在内存中的编码方式、内存分配器(jemalloc)、简单动态字符串(SDS)、RedisObject等;然后在此基础上介绍几个Redis内存模型的应用。 在后面的文章中,会陆续介绍关于Redis高可用的内容,包括主从复制、哨兵、集群等等,欢迎关注。
摘要: 对于高并发架构,毫无疑问缓存是最重要的一环,对于大量的高并发,可以采用三层缓存架构来实现,nginx+redis+ehcache
Distributed Lock Solution / Redis Distributed Lock
by leelight · Published September 23, 2018 · Last modified November 18, 2018
1. 集成Redis 首先在pom.xml中加入需要的redis依赖和缓存依赖
Redis High Avaliable Scale Architect
by leelight · Published September 23, 2018 · Last modified June 15, 2019
Redis 通常不会被用作主要的数据存储,但它在存储和访问可容忍丢失的临时数据(如度量指标、会话状态、缓存)方面却独有长处,并且速度非常快,不仅提供了最佳性能,还内置了一组非常有用的数据结构。它是现代技术栈中最常见的主要部件之一。 Stripe(一家做支付的硅谷创业公司)的速率限定器就是基于 Redis 构建的,这些限速器运行在一个 Redis 实例上。Redis 主服务器有一些用于失效备援的追随者,不过在任何时候,都只有一个节点在处理读写操作。 各种消息来源声称,一个 Redis 节点每秒可以处理百万次操作。尽管我们的操作没有那么多,但也不会很少。每个速率限定器都需要运行多个 Redis 命令,而每个 API 请求都要通过很多个速率限定器。所以,每个节点每秒钟需要处理数万次到数十万次的操作。 如果节点出现饱和,就会不断出现故障。我们的服务可以容忍 Redis 的不可用,因此大多数情况下是没有问题的,但在某些情况下,问题的严重程度会升级。我们最后通过迁移到包含 10 节点的 Redis 集群来解决这个问题。对性能的影响可以忽略不计,重要的是现在我们可以实现水平可伸缩。
在聊数据库与缓存一致性问题之前,先聊聊数据库主库与从库的一致性问题。 问:常见的数据库集群架构如何? 答:一主多从,主从同步,读写分离。
缓存与数据库的操作时序,不管是《5.2 Cache Aside Pattern》中的方案,还是《5.1 究竟先操作缓存,还是数据库?》中的方案,都会遇到缓存与数据库不一致的问题。今天聊聊这个问题。
Follow:
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |