Category: Distributed Cache

Bildergebnis für lego movie 2 0

[转]深入学习Redis(5):集群

1. 2. 前言 在前面的文章中,已经介绍了Redis的几种高可用技术:持久化、主从复制和哨兵,但这些方案仍有不足,其中最主要的问题是存储能力受单机限制,以及无法实现写操作的负载均衡。 Redis集群解决了上述问题,实现了较为完善的高可用方案。本文将详细介绍集群,主要内容包括:集群的作用;集群的搭建方法及设计方案;集群的基本原理;客户端访问集群的方法;以及其他实践中需要的集群知识(集群扩容、故障转移、参数优化等)。

0

[转]深入学习Redis(4):哨兵

1. 2. 前言 在 深入学习Redis(3):主从复制 中曾提到,Redis主从复制的作用有数据热备、负载均衡、故障恢复等;但主从复制存在的一个问题是故障恢复无法自动化。本文将要介绍的哨兵,它基于Redis主从复制,主要作用便是解决主节点故障恢复的自动化问题,进一步提高系统的高可用性。 文章主要内容如下:首先介绍哨兵的作用和架构;然后讲述哨兵系统的部署方法,以及通过客户端访问哨兵系统的方法;然后简要说明哨兵实现的基本原理;最后给出关于哨兵实践的一些建议。文章内容基于Redis 3.0版本。

0

[转]深入学习Redis(3):主从复制

1. 前言 在前面的两篇文章中,分别介绍了Redis的内存模型和Redis的持久化。 在Redis的持久化中曾提到,Redis高可用的方案包括持久化、主从复制(及读写分离)、哨兵和集群。其中持久化侧重解决的是Redis数据的单机备份问题(从内存到硬盘的备份);而主从复制则侧重解决数据的多机热备。此外,主从复制还可以实现负载均衡和故障恢复。 这篇文章中,将详细介绍Redis主从复制的方方面面,包括:如何使用主从复制、主从复制的原理(重点是全量复制和部分复制、以及心跳机制)、实际应用中需要注意的问题(如数据不一致问题、复制超时问题、复制缓冲区溢出问题)、主从复制相关的配置(重点是repl-timeout、client-output-buffer-limit slave)等。

0

[转]深入学习Redis(2):持久化

1. 2. 前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化、复制(及读写分离)、哨兵、以及集群。 本文将先说明上述几种技术分别解决了Redis高可用的什么问题;然后详细介绍Redis的持久化技术,主要是RDB和AOF两种持久化方案;在介绍RDB和AOF方案时,不仅介绍其作用及操作方法,同时介绍持久化实现的一些原理细节及需要注意的问题。最后,介绍在实际使用中,持久化方案的选择,以及经常遇到的问题等。

0

[转]深入学习Redis(1):Redis内存模型

1. 前言 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分。 我们使用Redis时,会接触Redis的5种对象类型(字符串、哈希、列表、集合、有序集合),丰富的类型是Redis相对于Memcached等的一大优势。在了解Redis的5种对象类型的用法和特点的基础上,进一步了解Redis的内存模型,对Redis的使用有很大帮助,例如: 1、估算Redis内存使用量。目前为止,内存的使用成本仍然相对较高,使用内存不能无所顾忌;根据需求合理的评估Redis的内存使用量,选择合适的机器配置,可以在满足需求的情况下节约成本。 2、优化内存占用。了解Redis内存模型可以选择更合适的数据类型和编码,更好的利用Redis内存。 3、分析解决问题。当Redis出现阻塞、内存占用等问题时,尽快发现导致问题的原因,便于分析解决问题。 这篇文章主要介绍Redis的内存模型(以3.0为例),包括Redis占用内存的情况及如何查询、不同的对象类型在内存中的编码方式、内存分配器(jemalloc)、简单动态字符串(SDS)、RedisObject等;然后在此基础上介绍几个Redis内存模型的应用。 在后面的文章中,会陆续介绍关于Redis高可用的内容,包括主从复制、哨兵、集群等等,欢迎关注。

0

[转]一个包含10节点的Redis集群实践案例

Redis 通常不会被用作主要的数据存储,但它在存储和访问可容忍丢失的临时数据(如度量指标、会话状态、缓存)方面却独有长处,并且速度非常快,不仅提供了最佳性能,还内置了一组非常有用的数据结构。它是现代技术栈中最常见的主要部件之一。 Stripe(一家做支付的硅谷创业公司)的速率限定器就是基于 Redis 构建的,这些限速器运行在一个 Redis 实例上。Redis 主服务器有一些用于失效备援的追随者,不过在任何时候,都只有一个节点在处理读写操作。 各种消息来源声称,一个 Redis 节点每秒可以处理百万次操作。尽管我们的操作没有那么多,但也不会很少。每个速率限定器都需要运行多个 Redis 命令,而每个 API 请求都要通过很多个速率限定器。所以,每个节点每秒钟需要处理数万次到数十万次的操作。 如果节点出现饱和,就会不断出现故障。我们的服务可以容忍 Redis 的不可用,因此大多数情况下是没有问题的,但在某些情况下,问题的严重程度会升级。我们最后通过迁移到包含 10 节点的 Redis 集群来解决这个问题。对性能的影响可以忽略不计,重要的是现在我们可以实现水平可伸缩。