Category: Database Partitioning&Scaling

Ähnliches Foto 0

[总结]分表分库时机选择及策略

1. 一. 分表 1-1. 应用场景: 对于大型的互联网应用来说,数据库单表的记录行数可能达到千万级甚至是亿级,并且数据库面临着极高的并发访问。采用Master-Slave复制模式的MySQL架构,只能够对数据库的读进行扩展,而对数据库的写入操作还是集中在Master上,并且单个Master挂载的Slave也不可能无限制多,Slave的数量受到Master能力和负载的限制。 因此,需要对数据库的吞吐能力进行进一步的扩展,以满足高并发访问与海量数据存储的需要!

[转]冗余数据一致性,到底如何保证? 0

[转]冗余数据一致性,到底如何保证?

1. 一,为什么要冗余数据 互联网数据量很大的业务场景,往往数据库需要进行水平切分来降低单库数据量。 水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了。 此时常见的架构设计方案,是使用数据冗余这种反范式设计来满足分库后不同维度的查询需求。

[转]跨库分页的四种方案 0

[转]跨库分页的四种方案

一、需求缘起 分页需求 互联网很多业务都有分页拉取数据的需求,例如: (1)微信消息过多时,拉取第N页消息 (2)京东下单过多时,拉取第N页订单 (3)浏览58同城,查看第N页帖子   这些业务场景对应的消息表,订单表,帖子表分页拉取需求有这样一些特点: (1)有一个业务主键id, 例如msg_id, order_id, tiezi_id (2)分页排序是按照非业务主键id来排序的,业务中经常按照时间time来排序order by

0

[总结]数据库解耦和拆分

随着业务越来越复杂,数据量越来越大,并发量越来越大,数据库的性能越来越低。好不容易找运维申请了两台机器,让DBA部署了几个实例,想把一些业务库拆分出来,却发现拆不出来,扩不了容,尴尬! 因为数据库强关联在一起,无法通过增加数据库实例扩容,就是一个耦合的典型案例。