[转]删库了,除了跑路还能怎么办?
1. 写在前面 虽然我们之前遇到的大多数的数据被删,都是运维同学或者 DBA 背锅的。但实际上,只要有数据操作权限的同学,都有可能踩到误删数据这条线。 今天我们就来聊聊误删数据前后,我们可以做些什么,减少误删数据的风险,和由误删数据带来的损失。
Just One Pure ITer
1. 写在前面 虽然我们之前遇到的大多数的数据被删,都是运维同学或者 DBA 背锅的。但实际上,只要有数据操作权限的同学,都有可能踩到误删数据这条线。 今天我们就来聊聊误删数据前后,我们可以做些什么,减少误删数据的风险,和由误删数据带来的损失。
本文将首先介绍 MySQL 事务相关的基础概念,然后介绍事务的 ACID 特性,并分析其实现原理。MySQL 博大精深,文章疏漏之处在所难免,欢迎批评指正。
最近有一个业务库的负载比往常高了很多,最直观的印象就是原来的负载最高是100%,现在不是翻了几倍或者指数级增长,而是突然翻了100倍,导致业务后端的数据写入剧增,产生了严重的性能阻塞。 1. 一、引入读写分离,优化初见成效 这类问题引起了我的兴趣和好奇心,经过和业务方沟通了解,这个业务是记录回执数据的,简单来说就好比你发送了一条微博,想看看有多少人已读,有多少人留言等。所以这类场景不存在事务,会有数据的密集型写入,会有明确的统计需求。
事务隔离级别是指多个事务同时操作数据库时,事务之间相互隔离的程度,SQL 92规范有四种隔离级别,MySQL InnoDB存储引擎也支持这四种级别:
随着闲鱼业务的发展,用户规模达到数亿级,用户维度的数据指标,达到上百个之多。 如何从亿级别的数据中,快速筛选出符合期望的用户人群,进行精细化人群运营,是技术需要解决的问题。业界的很多方案常常需要分钟级甚至小时级才能生成查询结果。本文提供了一种解决大数据场景下的高效数据筛选、统计和分析方法,从亿级别数据中,任意组合查询条件,筛选需要的数据,做到毫秒级返回。
MySQL主从复制,读写分离是互联网常见的数据库架构,该架构最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重。
近一个多月,写了一些MySQL内核的文字,稍作总结,希望对大家有帮助。 1.《InnoDB,为何并发如此之高?》 文章介绍了: (1)什么是并发控制; (2)并发控制的常见方法:锁,数据多版本; (3)redo,undo,回滚段的实践; (4)InnoDB如何利用回滚段实现MVCC,实现快照读。 结论是,快照读(Snapshot Read),这种不加锁的读,是InnoDB高并发的核心原因之一。 番外篇:《快照读,在RR和RC下的差异》 快照读,在可重复读与读提交两种事务隔离级别下,有微小的差异,文章通过案例做了简单叙述。
1. 引言 大家在面试中有没遇到面试官问你下面六句Sql的区别呢
1 2 3 4 5 6 |
select * from table where id = ? select * from table where id < ? select * from table where id = ? lock in share mode select * from table where id < ? lock in share mode select * from table where id = ? for update select * from table where id < ? for update |
如果你能清楚的说出,这六句sql在不同的事务隔离级别下,是否加锁,加的是共享锁还是排它锁,是否存在间隙锁,那这篇文章就没有看的意义了。
by leelight · Published November 13, 2018 · Last modified November 18, 2018
分布式是如何进入数据库领域的? 我曾经访问过一个有“营业时间”的网站,它只在某些时间段才“开放”。我因此感到困惑,还有点沮丧。计算机可以运行一整天,为什么这个网站就不可以呢?可能我已经习惯了互联网那种令人难以置信的可用性保证。 然而,在互联网出现之前,全天候可用性的概念还“不成气候”。可用性虽然令人期待,但还没有到非要不可的程度。我们只在有需要时才使用电脑,它们不会为了一个极小可能出现的请求而等待。随着互联网的出现和发展,之前不太常见的本地凌晨 3 点请求变成了全球性的主要营业时间点,确保计算机能够处理这些请求就变得非常重要。
如今硬件的性价比越来越高,网络传输速度越来越快,数据库分层的趋势逐渐显现,人们已经不再强求用一个解决方案来解决所有的存储问题,而是通过分层,让缓存与数据库负责各自擅长的业务场景。 TiDB 作为一款 HTAP 数据库,在高性能的实现 OLTP 特性基础之上,也同时提供基于实时交易数据的实时业务分析需求。 什么是 TiDB 数据库?
Follow:
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |