Category: Distributed Database
1. 1 为什么选择MongoDB? 1.性能 在大数据时代中,大数据量的处理已经成了考量一个数据库最重要的原因之一。而MongoDB的一个主要目标就是尽可能的让数据库保持卓越的性能,这很大程度地决定了MongoDB的设计。在一个以传统机械硬盘为主导的年代,硬盘很可能会成为性能的短板,而MongoDB选择了最大程度而利用内存资源用作缓存来换取卓越的性能,并且会自动选择速度最快的索引来进行查询。MongoDB尽可能精简数据库,将尽可能多的操作交给客户端,这种方式也是MongoDB能够保持卓越性能的原因之一。
技术人如果经常线上操作DB,河边走久了,难免出现纰漏: update错数据了 delete错数据了 drop错数据了 咋办?找DBA恢复数据呗,即使恢复不了,锅总得有人背呀。 画外音:把数据全删了,怎么办,怎么办?
1. 一. 分表 1-1. 应用场景: 对于大型的互联网应用来说,数据库单表的记录行数可能达到千万级甚至是亿级,并且数据库面临着极高的并发访问。采用Master-Slave复制模式的MySQL架构,只能够对数据库的读进行扩展,而对数据库的写入操作还是集中在Master上,并且单个Master挂载的Slave也不可能无限制多,Slave的数量受到Master能力和负载的限制。 因此,需要对数据库的吞吐能力进行进一步的扩展,以满足高并发访问与海量数据存储的需要!
今天和大家简单聊聊MySQL的约束主键与唯一索引约束: PRIMARY KEY and UNIQUE Index Constraints 文章不长,保证有收获。
第一篇,说说MySQL两个最常用的存储引擎,MyISAM和InnoDB。照自己的理解,把一些知识点总结出来,不只说知识点,多讲“为什么”。
AI 前线导读:图数据库有很多用途,适用于比如反欺诈、智能推荐等等应用场景,也有人说:图数据库可以做到关系数据库可以做到的任何事情。那图数据库究竟是怎样存储这些数据的,为什么它能适用于上述那些场景,图数据库真的比关系数据库先进么?本文作者花了一些时间去认真了解了一下图数据库,并将与我们分享他对图数据库的一些心得体会。
为什么开发人员必须要了解数据库锁? 超赞,InnoDB调试死锁的方法! InnoDB,并发如此之高的原因 InnoDB,巧妙实现四种隔离级别 InnoDB,索引记录上的三种锁 InnoDB,RR和RC的快照读有何不同 聚集索引与普通索引的差异 索引,底层是如何实现的?
1. 一,为什么要冗余数据 互联网数据量很大的业务场景,往往数据库需要进行水平切分来降低单库数据量。 水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了。 此时常见的架构设计方案,是使用数据冗余这种反范式设计来满足分库后不同维度的查询需求。
一、需求缘起 分页需求 互联网很多业务都有分页拉取数据的需求,例如: (1)微信消息过多时,拉取第N页消息 (2)京东下单过多时,拉取第N页订单 (3)浏览58同城,查看第N页帖子 这些业务场景对应的消息表,订单表,帖子表分页拉取需求有这样一些特点: (1)有一个业务主键id, 例如msg_id, order_id, tiezi_id (2)分页排序是按照非业务主键id来排序的,业务中经常按照时间time来排序order by
本文将以“用户中心”为例,介绍“单KEY”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践: 如何来实施水平切分 水平切分后常见的问题 典型问题的优化思路及实践