Category: MQ in distributed Architecture

[总结]MQ如何做到削峰填谷? 0

[总结]MQ如何做到削峰填谷?

MQ,很多的应用场景,是消息的订阅发布,是系统上下游的解耦,MQ的还有一个典型应用场景是缓冲流量,削峰填谷,本文将简单介绍下,MQ要怎么实现缓冲流量,削峰填谷。 站点与服务上下游之间,一般如何通讯? 有两种常见的方式。 一种是“直接调用”,通过RPC框架,上游直接调用下游。 一种是“MQ推送”,上游将消息发给MQ,MQ将消息推送给下游。

[转]17 个方面,综合对比 Kafka、RabbitMQ、RocketMQ、ActiveMQ 四个分布式消息队列 0

[转]17 个方面,综合对比 Kafka、RabbitMQ、RocketMQ、ActiveMQ 四个分布式消息队列

一、资料文档 二、开发语言 三、支持的协议 四、消息存储 五、消息事务 六、负载均衡 七、集群方式 八、管理界面 九、可用性 十、消息重复 十一、吞吐量TPS 十二、订阅形式和消息分发 十三、顺序消息 十四、消息确认 十五、消息回溯 十六、消息重试 十七、并发度 本文将从,Kafka、RabbitMQ、ZeroMQ、RocketMQ、ActiveMQ 17 个方面综合对比作为消息队列使用时的差异。

[转]消息中间件–5 消息处理失败&死信队列 0

[转]消息中间件–5 消息处理失败&死信队列

消息中间件消费到的消息处理失败怎么办? 一般生产环境中,如果你有丰富的架构设计经验,都会在使用MQ的时候设计两个队列:一个是核心业务队列,一个是死信队列。 核心业务队列,就是比如专门用来让订单系统发送订单消息的,然后另外一个死信队列就是用来处理异常情况的。比如说要是第三方物流系统故障了,此时无法请求,那么仓储系统每次消费到一条订单消息,尝试通知发货和配送,都会遇到对方的接口报错。 此时仓储系统就可以把这条消息拒绝访问,或者标志位处理失败!注意,这个步骤很重要。

[转]MQ中间件各种疑难杂症 0

[转]MQ中间件各种疑难杂症

1. 消息队列有什么优点和缺点? 为什么使用消息队列?假设你的业务场景遇到个技术挑战,如果不用 MQ 可能会很麻烦,但是你用了 MQ 之后会带给你很多好处。 消息队列 MQ 的常见使用场景其实有很多,但是比较核心的有如下三个: 解耦 异步 削峰 1-1-1. 解耦:A 系统发送个数据到 BCD 三个系统,接口调用发送,那如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?

[转]10倍请求压力来袭,你的系统会被击垮吗? 0

[转]10倍请求压力来袭,你的系统会被击垮吗?

1. 一、背景介绍 背景情况是这样:线上一个系统,在某次高峰期间MQ中间件故障的情况下,触发了降级机制,结果降级机制触发之后运行了一小会儿,突然系统就完全卡死,无法响应任何请求。 给大家简单介绍一下这个系统的整体架构,这个系统简单来说就是有一个非常核心的行为,就是往MQ里写入数据,但是这个往MQ里写入的数据是非常核心及关键的,绝对不容许有丢失。

[转]消息中间件–4如何保证数据100%不丢失? 0

[转]消息中间件–4如何保证数据100%不丢失?

1. 一、写在前面 上篇文章《同学,消息中间件在你们生产项目里如何落地使用的?》,我们用一个简单易懂的电商场景给大家引入说明了一个消息中间件的使用场景。 同时,我们还基于RabbitMQ的HelloWorld级别的代码,给出了订单服务和仓储服务如何基于MQ中间件收发消息的示例。