Category: Distributed Message Queue

[转]10倍请求压力来袭,你的系统会被击垮吗? 0

[转]10倍请求压力来袭,你的系统会被击垮吗?

1. 一、背景介绍 背景情况是这样:线上一个系统,在某次高峰期间MQ中间件故障的情况下,触发了降级机制,结果降级机制触发之后运行了一小会儿,突然系统就完全卡死,无法响应任何请求。 给大家简单介绍一下这个系统的整体架构,这个系统简单来说就是有一个非常核心的行为,就是往MQ里写入数据,但是这个往MQ里写入的数据是非常核心及关键的,绝对不容许有丢失。

[转]Twitter的Kafka迁移历程有哪些经验可以借鉴 0

[转]Twitter的Kafka迁移历程有哪些经验可以借鉴

Twitter 的实时性特点为 Twitter 的工程团队带来了独特而具有挑战性的问题。我们需要快速发布突发新闻,向用户提供相关广告,并解决很多其他实时性问题。Twitter 的 Pub/Sub 系统为 Twitter 团队提供了处理这些工作负载的基础设施。Twitter 的 Messaging 团队过去几年一直在运行一个内部 Pub/Sub 系统,叫作 EventBus(建立在 Apache DistributedLog 之上),但我们最近决定转向 Apache Kafka,不仅针对已有的用例,还包括新增的用例。在这篇文章中,我们将介绍为什么我们选择采用 Kafka 作为 Twitter 的 Pub/Sub 系统,以及我们在迁移过程中遇到的各种挑战。

[转]消息中间件–4如何保证数据100%不丢失? 0

[转]消息中间件–4如何保证数据100%不丢失?

1. 一、写在前面 上篇文章《同学,消息中间件在你们生产项目里如何落地使用的?》,我们用一个简单易懂的电商场景给大家引入说明了一个消息中间件的使用场景。 同时,我们还基于RabbitMQ的HelloWorld级别的代码,给出了订单服务和仓储服务如何基于MQ中间件收发消息的示例。

[转]消息中间件–2缺点 0

[转]消息中间件–2缺点

这篇文章给大家讲讲,如果你在系统架构里引入了消息中间件之后,会有哪些缺点? 1. 1 系统可用性降低 首先是你的系统整体可用性绝对会降低,给你举个例子,我们就拿之前的一幅图来说明。

[转]去哪儿网开源消息队列QMQ 0

[转]去哪儿网开源消息队列QMQ

GitHub 开源项目地址传送门: https://github.com/qunarcorp/qmq 1. 背   景 2012 年,随着公司业务的快速增长,公司当时的单体应用架构很难满足业务快速增长的要求,和其他很多公司一样,去哪儿网也开始了服务化改造,按照业务等要素将原来庞大的单体应用拆分成不同的服务。那么在进行服务化改造之前首先就是面临是服务化基础设施的技术选型,其中最重要的就是服务之间的通信中间件。一般来讲服务之间的通信可以分为同步方式和异步方式。同步的方式的代表就是 RPC,我们选择了当时还在活跃开发的 Alibaba Dubbo(在之后 Dubbo 官方停止了开发,但是最近 Dubbo 项目又重新启动了)。 异步方式的代表就是消息队列 (Message Queue),MQ 在当时也有很多开源的选择:RabbitMQ, ActiveMQ, Kafka, MetaQ(RocketMQ 的前身)。首先因为技术栈我们排除了 erlang 开发的 RabbitMQ,而 Kafka 以及 Java 版 Kafka 的 MetaQ 在当时还并不成熟和稳定。而...

[转]比拼Kafka,大数据分析新秀Pulsar到底好在哪 0

[转]比拼Kafka,大数据分析新秀Pulsar到底好在哪

AI 前线导读: 一年一度由世界知名科技媒体 InfoWorld 评选的 Bossie Awards 于 9 月 26 日公布,本次 Bossie Awards 评选出了最佳数据库与数据分析平台奖、最佳软件开发工具奖、最佳机器学习项目奖等多个奖项。在 最佳开源数据库与数据分析平台奖 中,之前曾连续两年入选的 Kafka 意外滑铁卢落选,取而代之的是新兴项目 Pulsar。 Bossie Awards 中对 Pulsar 点评如下:“Pulsar 旨在取代 Apache Kafka 多年的主宰地位。Pulsar 在很多情况下提供了比 Kafka 更快的吞吐量和更低的延迟,并为开发人员提供了一组兼容的 API,让他们可以很轻松地从 Kafka 切换到 Pulsar。Pulsar 的最大优点在于它提供了比 Apache Kafka...

[转]Kafka如何做到1秒处理1500万条消息? 0

[转]Kafka如何做到1秒处理1500万条消息?

一位软件工程师将通过本文向您呈现 Apache Kafka 在大型应用中的 20 项最佳实践。 Apache Kafka 是一款流行的分布式数据流平台,它已经广泛地被诸如 New Relic(数据智能平台)、Uber、Square(移动支付公司)等大型公司用来构建可扩展的、高吞吐量的、且高可靠的实时数据流系统。 例如,在 New Relic 的生产环境中,Kafka 群集每秒能够处理超过 1500 万条消息,而且其数据聚合率接近 1Tbps。 可见,Kafka 大幅简化了对于数据流的处理,因此它也获得了众多应用开发人员和数据管理专家的青睐。

Bildergebnis für 火车 0

[转]分布式系统之消息队列

1. 2. 一、MQ简介 消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。 使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ 3. 二、消息队列应用场景 以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。

[转]Kafka实践:到底该不该把不同类型的消息放在同一个主题中? 0

[转]Kafka实践:到底该不该把不同类型的消息放在同一个主题中?

Kafka 主题最重要的一个功能是可以让消费者指定它们想要消费的消息子集。在极端情况下,将所有数据放在同一个主题中可能不是一个好主意,因为这样消费者就无法选择它们感兴趣的事件——它们需要消费所有的消息。另一种极端情况,拥有数百万个不同的主题也不是一个好主意,因为 Kafka 的每个主题都是有成本的,拥有大量主题会损害性能。 实际上,从性能的角度来看,分区数量才是关键因素。在 Kafka 中,每个主题至少对应一个分区,如果你有 n 个主题,至少会有 n 个分区。不久之前,Jun Rao 写了一篇博文,解释了拥有多个分区的成本(端到端延迟、文件描述符、内存开销、发生故障后的恢复时间)。根据经验,如果你关心延迟,那么每个节点分配几百个分区就可以了。如果每个节点的分区数量超过成千上万个,就会造成较大的延迟。