[转]分层架构设计 – 4 前后端分离
通用业务服务化之后,系统的典型后端结构如上: web-server通过RPC接口,从通用业务服务获取数据 biz-service通过RPC接口,从多个基础数据service获取数据 基础数据service通过DAO,从独立db/cache获取数据 db/cache存储数据 随着时间的推移,系统架构并不会一成不变,业务越来越复杂,改版越来越多,此时web-server层虽然使用了MVC架构,但以下诸多痛点是否似曾相识?
Just One Pure ITer
通用业务服务化之后,系统的典型后端结构如上: web-server通过RPC接口,从通用业务服务获取数据 biz-service通过RPC接口,从多个基础数据service获取数据 基础数据service通过DAO,从独立db/cache获取数据 db/cache存储数据 随着时间的推移,系统架构并不会一成不变,业务越来越复杂,改版越来越多,此时web-server层虽然使用了MVC架构,但以下诸多痛点是否似曾相识?
《互联网分层架构的本质》简述了两个观点: 互联网分层架构的本质,是数据的移动 互联网分层架构演进的核心原则:是让上游更高效的获取与处理数据,让下游能屏蔽数据的获取细节 《分层架构:什么时候抽象DAO层,什么时候抽象数据服务层》中的观点是: 当手写代码从DB中获取数据,成为通用痛点的时候,就应该抽象出DAO层,简化数据获取过程,提高数据获取效率,向上游屏蔽底层的复杂性 当业务越来越复杂,垂直拆分的系统越来越多,数据库实施了水平切分,数据层实施了缓存加速之后,底层数据获取复杂性成为通用痛点的时候,就应该抽象出数据服务层,简化数据获取过程,提高数据获取效率,向上游屏蔽底层的复杂性
互联网分层架构的本质,是数据的移动。 互联网分层架构演进的核心原则: 让上游更高效的获取与处理数据,复用 让下游能屏蔽数据的获取细节,封装
上图是一个典型的互联网分层架构: 客户端层:典型调用方是browser或者APP 站点应用层:实现核心业务逻辑,从下游获取数据,对上游返回html或者json 数据-缓存层:加速访问存储 数据-数据库层:固化数据存储
http://blog.christianposta.com/microservices/low-risk-monolith-to-microservice-evolution/ http://blog.christianposta.com/microservices/low-risk-monolith-to-microservice-evolution-part-ii/ http://blog.christianposta.com/microservices/low-risk-monolith-to-microservice-evolution-part-iii/ 讲讲拆分:从单体式应用到微服务的低风险演变 从单体式应用到微服务的低风险演变 II
随着业务越来越复杂,数据量越来越大,并发量越来越大,数据库的性能越来越低。好不容易找运维申请了两台机器,让DBA部署了几个实例,想把一些业务库拆分出来,却发现拆不出来,扩不了容,尴尬! 因为数据库强关联在一起,无法通过增加数据库实例扩容,就是一个耦合的典型案例。
1. 写在前面 当我在帮助一些开发者或架构师分析及优化 Java 应用程序的性能时,关键往往不在于对个别方法进行微调,以节省一或两微秒的执行时间。虽然对某些软件来说,微秒级的优化确实非常重要,但我认为这并非着眼点所在。我在 2015 年间对数百个应用进行了分析,发现多数性能与可伸缩性问题都来源于糟糕的架构决策、框架的错误配置、错误的数据库访问模式、过量的日志记录,以及由于内存过度消耗而导致的垃圾回收所带来的影响。
When I help developers or architects analyze and optimize the performance of their Java application it is not about tweaking individual methods to squeeze out another millisecond or two in execution time. While for...
1. 一、背景 在当今互联网时代,企业大都采用分布式系统设计和微服务化,内部关系错综复杂,各产品分散,集成度不高。虽有众多日志监控工具,但没有全链路监控,定位问题及根因分析耗时长。同时由于缺乏决策并自动控制(自愈)机制,基本靠人工来排查处理,面对大规模高并发的场景时,对数据中心的性能、安全、稳定性影响缺乏量化,合理性规划时也很难兼顾性能与稳定性、可用性。 此前苏宁已有穆加服务端性能监控(以下简称 Baymax)、穆加调用链监控(以下简称 HIRO)等产品,但这仅仅是在“监”的层面上去主动发现系统出现的一些问题,而没有对解决这些问题做出“控”的动作。基于此,我们研发了穆加决策分析平台(以下简称 ZEUS),它将打通苏宁内部所有的监控渠道,真正意义上使得监控系统具备“控”的能力,通过与运维系统联动,达到系统问题自愈的效果,实现“监”与“控”完美结合。
by leelight · Published September 15, 2018 · Last modified September 16, 2018
港真,Null 貌似在哪里都是个头疼的问题,比如 Java 里让人头疼的 NullPointerException,为了避免猝不及防的空指针异常,千百年来程序猿们不得不在代码里小心翼翼的各种 if 判断,麻烦而又臃肿,为此 java8 引入了 Optional 来避免这一问题。 下面咱们要聊的是 MySQL 里的 null,在大量的 MySQL 优化文章和书籍里都提到了字段尽可能用NOT NULL,而不是NULL,除非特殊情况。但却都只给结论不说明原因,犹如鸡汤不给勺子一样,让不少初学者对这个结论半信半疑或者云里雾里。本文今天就详细的剖析下使用 Null 的原因,并给出一些不用 Null 的理由。
Follow:
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |