Tagged: ElasticSearch

[汇总] ElasticSearch经验 0

[汇总] ElasticSearch经验

图解ElasticSearch原理,你可收好了! Elasticsearch 技术分析(九):全文搜索引擎Elasticsearch,这篇文章给讲透了! Elasticsearch 如何做到快速检索 – 倒排索引的秘密 为什么 ElasticSearch 比 MySQL 更适合复杂条件搜索 一次惊心动魄的ElasticSearch集群灾难恢复记!

[转]全文搜索引擎选 ElasticSearch 还是 Solr? 0

[转]全文搜索引擎选 ElasticSearch 还是 Solr?

最近项目组安排了一个任务,项目中用到了全文搜索,基于全文搜索 Solr,但是该 Solr 搜索云项目不稳定,经常查询不出来数据,需要手动全量同步,而且是其他团队在维护,依赖性太强,导致 Solr 服务一出问题,我们的项目也基本瘫痪,因为所有的依赖查询都无结果数据了。所以考虑开发一个适配层,如果 Solr 搜索出问题,自动切换到新的搜索–ES。 其实可以通过 Solr 集群或者服务容错等设计来解决该问题。但是先不考虑本身设计的合理性,领导需要开发,所以我开始踏上了搭建 ES 服务的道路,从零开始,因为之前完全没接触过 ES,所以通过本系列来记录下自己的开发过程。

[转]超详细的Elasticsearch高性能优化实践 0

[转]超详细的Elasticsearch高性能优化实践

1. ES 性能调优 ES 的默认配置,是综合了数据可靠性、写入速度、搜索实时性等因素。实际使用时,我们需要根据公司要求,进行偏向性的优化。 1-1. 写优化 假设我们的应用场景要求是,每秒 300 万的写入速度,每条 500 字节左右。 针对这种对于搜索性能要求不高,但是对写入要求较高的场景,我们需要尽可能的选择恰当写优化策略。 综合来说,可以考虑以下几个方面来提升写索引的性能: 加大 Translog Flush ,目的是降低 Iops、Writeblock。 增加 Index Refresh 间隔,目的是减少 Segment Merge 的次数。 调整 Bulk 线程池和队列。 优化节点间的任务分布。 优化 Lucene 层的索引建立,目的是降低 CPU...

[总结]从10秒到2秒!ElasticSearch性能调优实践 0

[总结]从10秒到2秒!ElasticSearch性能调优实践

做过数据收集、数据开发、数据存储的同学相信对这个简称并不陌生,而 ElasticSearch(以下简称 ES)则在 ELK 栈中占着举足轻重的地位。 前一段时间,我亲身参与了一个 ES 集群的调优,今天把我所了解与用到的调优方法与大家分享,如有错误,请大家包涵与指正。

[转]基于Elasticsearch分布式搜索引擎的架构原理 0

[转]基于Elasticsearch分布式搜索引擎的架构原理

1. (1)倒排索引到底是啥? 要了解分布式搜索引擎,先了解一下搜索这个事儿吧,搜索这个技术领域里最入门级别的一个概念就是倒排索引。 我们先简单说一下倒排索引是个什么东西。

[转]400+节点Elasticsearch集群的运维经验 0

[转]400+节点Elasticsearch集群的运维经验

Meltwater 的工程师通过官方技术博客分享了他们如何运行和维护 400+ 节点的 Elasticsearch 集群。主要介绍了业务中积累的时间序列数据的特点、数据量和每日滚动索引策略,以及他们对 Elasticsearch 版本的选择(没错,目前他们使用的是 1.X,而且做了源码级的修改)、为何不选择托管的云服务、索引结构和分片规划等,最后重点介绍了他们在性能方面的努力和经验,给出了一个性能参考列表。

[转]日均5亿查询量,京东到家订单中心ES架构演进 0

[转]日均5亿查询量,京东到家订单中心ES架构演进

京东到家订单中心系统业务中,无论是外部商家的订单生产,或是内部上下游系统的依赖,订单查询的调用量都非常大,造成了订单数据读多写少的情况。 我们把订单数据存储在 MySQL 中,但显然只通过 DB 来支撑大量的查询是不可取的。 同时对于一些复杂的查询,MySQL 支持得不够友好,所以订单中心系统使用了 Elasticsearch 来承载订单查询的主要压力。

[转]携程新一代监控告警平台Hickwall架构演进 0

[转]携程新一代监控告警平台Hickwall架构演进

监控告警是网站可用性的第一道防线,为网站提供更加实时可靠高效的监控告警,对互联网企业具有非凡的意义。致力于这个目标,经过不断地改进,携程新一代监控告警平台 Hickwall 在存储效率、查询速度和告警可靠性方面都有了极大的改善。 本文将从存储、聚合、告警三个方面介绍 Hickwall 在核心架构方面的演进。

[转]分布式之elk日志架构的演进 0

[转]分布式之elk日志架构的演进

1. 日志系统的必要性? 最早定位生产问题,就是连上一台机器,然后用使用 grep / sed / awk 等 Linux 脚本工具去日志里查找故障原因。如果发现不在这台机器上,就去另一台机器上查日志。有经历过上述步骤的童鞋们,请握个抓! 然而,当你的生产上是一个有几千台机器的集群呢?你要如何定位生产问题呢?又或者,你哪天有这么一个需求,你需要收集某个时间段内的应用日志,你应该如何做? 为了解决上述问题,我们就需要将日志集中化管理。这样做,可以提高我们的诊断效率。同时也有利于我们全面理解系统。

[转]滴滴Elasticsearch多集群架构实践 0

[转]滴滴Elasticsearch多集群架构实践

Elasticsearch 是基于 Lucene 实现的分布式搜索引擎,提供了海量数据实时检索和分析能力。Elastic 公司开源的一系列产品组成的 Elastic Stack,可以为日志服务、搜索引擎、系统监控等提供简单、易用的解决方案。