Tagged: Redis
[转]新浪日访问量百亿级的应用如何做缓存架构设计
微博日活跃用户1.6亿+,每日访问量达百亿级,面对庞大用户群的海量访问,良好架构且不断改进的缓存体系具有非常重要的支撑作用。刷微博吗?跟我们一起听听那些庞大的数据是如何呈现的吧! 陈波:大家好,今天的分享主要有以下内容,首先是微博在运行过程中的数据挑战,然后是Feed系统架构,接下来会着重分析Cache架构及演进,最后是总结、展望。
[转]携程200T+规模的Redis容器化实践
1. 背景 携程大部分应用是基于 CRedis 客户端通过集群来访问到实际的 Redis 的实例,集群是访问 Redis 的基本单位,多个集群对应一个 Pool,一个 Pool 对应一个 Group,每个 Group 对应一个或多个实例,Key 是通过一致性 hash 散列到每个 Group 上,集群拓扑图如截图所示。 这个图里面我们可以看到集群,Pool,Group 还有里面的实例,这是携程 Redis 一个比较常见的拓扑图,如下图: 2. 为什么要容器化 2-1. 标准化和自动化 Redis 之前是直接部署在物理机上,而 DBA 是根据物理机上设定的 Redis 的版本来选择需要部署的物理机,携程的各个版本的...
[转]Redis持久化实战
它支持的数据类型很丰富,如字符串、链表、集合、以及散列等,并且还支持多种排序功能。 1. 什么叫持久化? 用一句话可以将持久化概括为:将数据(如内存中的对象)保存到可永久保存的存储设备中。 持久化的主要应用是将内存中的对象存储在数据库中,或者存储在磁盘文件中、 XML 数据文件中等等。
[总结]Redis热点Key发现及常见解决方案
1. 一、热点Key问题产生的原因 1、用户消费的数据远大于生产的数据(热卖商品、热点新闻、热点评论、明星直播)。 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的降价促销,当这其中的某一件商品被数万次点击浏览或者购买时,会形成一个较大的需求量,这种情况下就会造成热点问题。 同理,被大量刊发、浏览的热点新闻、热点评论、明星直播等,这些典型的读多写少的场景也会产生热点问题。 2、请求分片集中,超过单 Server 的性能极限。 在服务端读数据进行访问时,往往会对数据进行分片切分,此过程中会在某一主机 Server 上对相应的 Key 进行访问,当访问超过 Server 极限时,就会导致热点 Key 问题的产生。 2. 二、热点Key问题的危害 1、流量集中,达到物理网卡上限。 2、请求过多,缓存分片服务被打垮。 3、DB 击穿,引起业务雪崩。 如前文讲到的,当某一热点 Key 的请求在某一主机上超过该主机网卡上限时,由于流量的过度集中,会导致服务器中其它服务无法进行。 如果热点过于集中,热点 Key 的缓存过多,超过目前的缓存容量时,就会导致缓存分片服务被打垮现象的产生。 当缓存服务崩溃后,此时再有请求产生,会缓存到后台 DB 上,由于DB 本身性能较弱,在面临大请求时很容易发生请求穿透现象,会进一步导致雪崩现象,严重影响设备的性能。 3....
[转]深入学习Redis(5):集群
1. 2. 前言 在前面的文章中,已经介绍了Redis的几种高可用技术:持久化、主从复制和哨兵,但这些方案仍有不足,其中最主要的问题是存储能力受单机限制,以及无法实现写操作的负载均衡。 Redis集群解决了上述问题,实现了较为完善的高可用方案。本文将详细介绍集群,主要内容包括:集群的作用;集群的搭建方法及设计方案;集群的基本原理;客户端访问集群的方法;以及其他实践中需要的集群知识(集群扩容、故障转移、参数优化等)。
[转]深入学习Redis(4):哨兵
1. 2. 前言 在 深入学习Redis(3):主从复制 中曾提到,Redis主从复制的作用有数据热备、负载均衡、故障恢复等;但主从复制存在的一个问题是故障恢复无法自动化。本文将要介绍的哨兵,它基于Redis主从复制,主要作用便是解决主节点故障恢复的自动化问题,进一步提高系统的高可用性。 文章主要内容如下:首先介绍哨兵的作用和架构;然后讲述哨兵系统的部署方法,以及通过客户端访问哨兵系统的方法;然后简要说明哨兵实现的基本原理;最后给出关于哨兵实践的一些建议。文章内容基于Redis 3.0版本。
[转]深入学习Redis(3):主从复制
1. 前言 在前面的两篇文章中,分别介绍了Redis的内存模型和Redis的持久化。 在Redis的持久化中曾提到,Redis高可用的方案包括持久化、主从复制(及读写分离)、哨兵和集群。其中持久化侧重解决的是Redis数据的单机备份问题(从内存到硬盘的备份);而主从复制则侧重解决数据的多机热备。此外,主从复制还可以实现负载均衡和故障恢复。 这篇文章中,将详细介绍Redis主从复制的方方面面,包括:如何使用主从复制、主从复制的原理(重点是全量复制和部分复制、以及心跳机制)、实际应用中需要注意的问题(如数据不一致问题、复制超时问题、复制缓冲区溢出问题)、主从复制相关的配置(重点是repl-timeout、client-output-buffer-limit slave)等。
[转]深入学习Redis(2):持久化
1. 2. 前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化、复制(及读写分离)、哨兵、以及集群。 本文将先说明上述几种技术分别解决了Redis高可用的什么问题;然后详细介绍Redis的持久化技术,主要是RDB和AOF两种持久化方案;在介绍RDB和AOF方案时,不仅介绍其作用及操作方法,同时介绍持久化实现的一些原理细节及需要注意的问题。最后,介绍在实际使用中,持久化方案的选择,以及经常遇到的问题等。
[转]深入学习Redis(1):Redis内存模型
1. 前言 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分。 我们使用Redis时,会接触Redis的5种对象类型(字符串、哈希、列表、集合、有序集合),丰富的类型是Redis相对于Memcached等的一大优势。在了解Redis的5种对象类型的用法和特点的基础上,进一步了解Redis的内存模型,对Redis的使用有很大帮助,例如: 1、估算Redis内存使用量。目前为止,内存的使用成本仍然相对较高,使用内存不能无所顾忌;根据需求合理的评估Redis的内存使用量,选择合适的机器配置,可以在满足需求的情况下节约成本。 2、优化内存占用。了解Redis内存模型可以选择更合适的数据类型和编码,更好的利用Redis内存。 3、分析解决问题。当Redis出现阻塞、内存占用等问题时,尽快发现导致问题的原因,便于分析解决问题。 这篇文章主要介绍Redis的内存模型(以3.0为例),包括Redis占用内存的情况及如何查询、不同的对象类型在内存中的编码方式、内存分配器(jemalloc)、简单动态字符串(SDS)、RedisObject等;然后在此基础上介绍几个Redis内存模型的应用。 在后面的文章中,会陆续介绍关于Redis高可用的内容,包括主从复制、哨兵、集群等等,欢迎关注。